Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interface layer control and optimization of InAs/GaSb type-II superlattices grown by molecular beam epitaxy

Identifieur interne : 000088 ( Main/Repository ); précédent : 000087; suivant : 000089

Interface layer control and optimization of InAs/GaSb type-II superlattices grown by molecular beam epitaxy

Auteurs : RBID : Pascal:14-0018969

Descripteurs français

English descriptors

Abstract

We reported in the paper the optimization and control of InSb interface properties during molecular beam epitaxy growth of InAs/GaSb superlattice structures. Samples with identical structure but different growth approaches, conventional molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE), for interface layers were first prepared and their structural, morphological and optical properties were compared. The MEE samples had significant higher As composition in InSb interface layers and higher luminescence efficiency. Samples with different InSb interface layer thickness were then prepared. By changing the interface layer thickness, one can effectively tune the lattice mismatch and photoluminescence peak wavelength. Though X-ray diffraction satellite peak linewidth and surface roughness of the grown samples changed little, the one with smallest negative lattice mismatch showed the highest luminescence efficiency. Finally a P-I-N superlattice detector structure was grown with controlled interfaces. The full width at half maximum (FWHM) of the 1st-order X-ray diffraction satellite peak of the absorption layers was only 19". The detector structure showed a cutoff wavelength of 6.3 μm at 77 K. The dark current density at -50 mV bias was 4.3 × 10-5 A/cm2 and the peak detectivity was 4.2 × 1011 cm Hz1/2/W.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0018969

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Interface layer control and optimization of InAs/GaSb type-II superlattices grown by molecular beam epitaxy</title>
<author>
<name>ZHICHENG XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIANXIN CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>FANGFANG WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YI ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CHUAN JIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LI HE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200083</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0018969</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0018969 INIST</idno>
<idno type="RBID">Pascal:14-0018969</idno>
<idno type="wicri:Area/Main/Corpus">000317</idno>
<idno type="wicri:Area/Main/Repository">000088</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Current density</term>
<term>Dark current</term>
<term>Detectors</term>
<term>Diffusion</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Interface properties</term>
<term>Interfaces</term>
<term>Layer thickness</term>
<term>Line widths</term>
<term>Luminescence</term>
<term>Mismatch lattice</term>
<term>Molecular beam epitaxy</term>
<term>Optical properties</term>
<term>Optimization</term>
<term>Photoluminescence</term>
<term>Roughness</term>
<term>Superlattices</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Interface</term>
<term>Optimisation</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Superréseau</term>
<term>Epitaxie jet moléculaire</term>
<term>Propriété interface</term>
<term>Mécanisme croissance</term>
<term>Diffusion(transport)</term>
<term>Propriété optique</term>
<term>Luminescence</term>
<term>Epaisseur couche</term>
<term>Accommodation réseau</term>
<term>Photoluminescence</term>
<term>Diffraction RX</term>
<term>Largeur raie</term>
<term>Rugosité</term>
<term>Détecteur</term>
<term>Courant obscurité</term>
<term>Densité courant</term>
<term>8115H</term>
<term>8110A</term>
<term>6630</term>
<term>7820</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We reported in the paper the optimization and control of InSb interface properties during molecular beam epitaxy growth of InAs/GaSb superlattice structures. Samples with identical structure but different growth approaches, conventional molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE), for interface layers were first prepared and their structural, morphological and optical properties were compared. The MEE samples had significant higher As composition in InSb interface layers and higher luminescence efficiency. Samples with different InSb interface layer thickness were then prepared. By changing the interface layer thickness, one can effectively tune the lattice mismatch and photoluminescence peak wavelength. Though X-ray diffraction satellite peak linewidth and surface roughness of the grown samples changed little, the one with smallest negative lattice mismatch showed the highest luminescence efficiency. Finally a P-I-N superlattice detector structure was grown with controlled interfaces. The full width at half maximum (FWHM) of the 1st-order X-ray diffraction satellite peak of the absorption layers was only 19". The detector structure showed a cutoff wavelength of 6.3 μm at 77 K. The dark current density at -50 mV bias was 4.3 × 10
<sup>-5</sup>
A/cm
<sup>2</sup>
and the peak detectivity was 4.2 × 10
<sup>11</sup>
cm Hz
<sup>1/2</sup>
/W.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>386</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Interface layer control and optimization of InAs/GaSb type-II superlattices grown by molecular beam epitaxy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHICHENG XU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JIANXIN CHEN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FANGFANG WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YI ZHOU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CHUAN JIN</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LI HE</s1>
</fA11>
<fA14 i1="01">
<s1>Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road</s1>
<s2>Shanghai 200083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>220-225</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000504283420380</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0018969</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We reported in the paper the optimization and control of InSb interface properties during molecular beam epitaxy growth of InAs/GaSb superlattice structures. Samples with identical structure but different growth approaches, conventional molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE), for interface layers were first prepared and their structural, morphological and optical properties were compared. The MEE samples had significant higher As composition in InSb interface layers and higher luminescence efficiency. Samples with different InSb interface layer thickness were then prepared. By changing the interface layer thickness, one can effectively tune the lattice mismatch and photoluminescence peak wavelength. Though X-ray diffraction satellite peak linewidth and surface roughness of the grown samples changed little, the one with smallest negative lattice mismatch showed the highest luminescence efficiency. Finally a P-I-N superlattice detector structure was grown with controlled interfaces. The full width at half maximum (FWHM) of the 1st-order X-ray diffraction satellite peak of the absorption layers was only 19". The detector structure showed a cutoff wavelength of 6.3 μm at 77 K. The dark current density at -50 mV bias was 4.3 × 10
<sup>-5</sup>
A/cm
<sup>2</sup>
and the peak detectivity was 4.2 × 10
<sup>11</sup>
cm Hz
<sup>1/2</sup>
/W.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60F30</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H20</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Interface</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Superréseau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Superlattices</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Propriété interface</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Interface properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Propiedad interfase</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Luminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Luminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>XRD</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Largeur raie</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Line widths</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Détecteur</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Detectors</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Courant obscurité</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Dark current</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Corriente obscuridad</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Densité courant</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Current density</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>6630</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7820</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>020</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000088 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000088 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0018969
   |texte=   Interface layer control and optimization of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024